
Pergamon 
Journal o/" Structural Geology. Vol. 16, No. 4, pp. 477 to 491. 1994 

Copyright © 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0191-8141/94 $fi.(){) + O.Ofl 

Strain and fabric analyses based on porphyroclast interaction 

BASIL TIKOFF a n d  CHRISTIAN TEYSSIER 

Department of Geology and Geophysics. University of Minnesota, Minneapolis, MN 55455, U.S.A. 

(Received 18 January 1993; accepted in revised form 27 September 1993) 

Abstract---Two-dimensional computer models of the interaction of elliptical clasts in a variety of kinematic 
conditions are used to study how clast imbrication and shape fabric development relate to strain and strain 
history. The models provide templates, for a known clast density and clast ellipticity, that correlate clast 
imbrication, angle of collision and clast shape fabric to strain and kinematics of deformed rocks, Modeling also 
shows that the mode of clast interaction plays a significant role in the accumulation of imbricated clasts and the 
development of shape fabric. Upon collision between clasts, the trains formed can remain fixed or rotate. If they 
rotate, imbricated clasts can become independent when they are no longer forced together by the flow. Based 
upon the mode of clast and train rotation (using the March rotation of passive lines and the Jeffery rotation of 
rigid particles as end-members),  three models are defined in an attempt to simulate the conditions of clast 
interaction under varying conditions. The March-fixed train, March-rotating train and Jeffery-rotating train 
models simulate solid-state, intermediate and magmatic conditions, respectively. Modeling shows that the two 
March models produce similar results, but the Jeffery model of train rotation always produces a lower proportion 
of imbricated clasts and a much weaker shape fabric. 

Application of the modeling to the study of a syntectonic granite in the Sierra Nevada suggests thai 
deformation was dominated by simple shear. Some K-feldspar imbrication and fabric development took place 
initially in the magmatic stage, and culminated in the solid state to produce a large proportion of imbricated K- 
feldspar porphyroclasts which define a strong shape fabric. This type of analysis provides a rationale to determine 
syn- vs post-emplacement deformation in the granite. 

INTRODUCTION 

MOST strain analysis techniques utilize the shape or 
distribution of heterogeneities in the material to deter- 
mine the bulk deformation of rocks. In this paper, we 
focus on porphyroclasts (abbreviated to clasts) which 
represent a common type of heterogeneity in deforming 
granitoids. The rotational dynamics of individual clasts, 
or more generally elliptical rigid particles, in ductile flow 
has been studied (Jeffery 1922, Ghosh & Ramberg 1976, 
Willis 1977, Freeman 1985) and, assuming steady-state 
flow and non-interacting clasts, can be used to analyze 
the kinematics of deformation (Passchier 1987). How- 
ever, the interaction between particles, which clearly 
disrupts their normal rotation (lldefonse et al. 1992a,b), 
has received little attention. Particle interaction can be 
defined in terms of two components: progressive imbri- 
cation of elongate clasts by rotation ('tiling', Fernandez 
et al. 1983); and imbrication of rigid clasts by the inter- 
section of particle flow paths in the displacement field 
(Blumenfeld & Bouchez 1988). In this paper, we model 
this second type of imbrication, although the use of 
elongate particles necessarily leads to tiling. 

Den Tex (1969) first studied tiling of olivine crystals 
and noted that their crystallographic axes were consist- 
ently oriented at an angle to the flow direction. This 
imbrication results in a shape fabric as well as a lattice 
fabric. Fernandez et al. (1983) and Ildefonse & Fernan- 
dez (1988) reproduced this type of clast interaction in 
two-dimensional simple shear deformation experi- 
ments, using rods suspended in a viscous medium. 
Blumenfeld & Bouchez (1988) also invoked tiling to 

explain K-feldspar imbrication in granite. More re- 
cently, Ildefonse et al. (1992a) have shown that tiling 
slows down particle rotation and is most pronounced for 
a high clast/matrix ratio and where clasts have large 
aspect ratios (elliptical ratio, R e > 2.5). Further work by 
Iidefonse et al. (1992b) demonstrated that clasts signifi- 
cantly perturb the rotation of their immediate neighbors 
when they are within two semimajor axes, or one diam- 
eter, of each other. 

Tiling certainly is an important mechanism of inter- 
action for clasts with high aspect ratios (Ildefonse et al. 
1992a). However, the imbrication of subspherical par- 
ticles, which is theoretically impossible by tiling, com- 
monly occurs in nature. Subspherical clasts can only 
interact if their relative movement paths intersect. This 
kinematically-controlled component of clast inter- 
action, or collision of particles in the flow field, is poorly 
understood. In this paper, we model in two dimensions 
the interaction of elliptical particles, representing rigid 
clasts in a ductile matrix. Modeling shows that the 
proportion of imbricated clasts increases with increasing 
strain, and can therefore be used as a strain measure .  In 
addition, various combinations of pure and simple shear 
are shown to affect the proportion of imbricated clasts. 
Therefore, we propose that clast interaction provides 
important information on the type of strain history.  

Moreover, analysis of particle imbrication can poten- 
tially provide insight into the conditions of deformation, 
such as solid-state vs magmatic flow. We define three 
types of clast interaction (rotation and imbrication) in an 
attempt to model solid-state, intermediate and viscous- 
state deformation. Comparison with natural systems in 
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Fig. l. (a) Graphical display of a starting configuration. Clasts are treated as ellipses for rotation and imbrication--circles, 
instead of ellipses, were drawn for computational speed. The tick mark shows the long axis orientation of the ellipse. (b) 
Output corresponding to g = 1.67 in a simple shear deformation. Black clasts have imbricated. Notice that clasts' long axes 

are becoming aligned parallel to the shear plane. 

grani tes  of  the  Sier ra  N e v a d a  al lows inferences  to be 
made  on the s ta te  of  the rock when clast imbr ica t ion  
occur red .  

M O D E L I N G  

The  mode l ing  t echn ique  is pure ly  k inemat ic .  A two- 
d imens iona l  box is c r ea t ed  on a c o m p u t e r  screen and 
filled with a p r e d e t e r m i n e d  dens i ty  of  clasts of  a given 
size and shape  (Fig.  l a ) .  The  clasts a re  p laced  r a n d o m l y  
in the  box,  but  at least  one  radius  (or  one-ha l f  of  the  
ma jo r  plus m i n o r  axis for  e l l ipses)  s epa ra t e s  the edges  of  
the  nea res t  ad jacen t  clasts.  W h e n  el l ipses are  used ,  thei r  
o r i en t a t i on  is also r a n d o m .  The  box is then  sub jec ted  to 
an inc remen ta l ,  p lane  s t ra in  d e f o r m a t i o n  (Fig.  l b ;  see 
A p p e n d i x ) .  The  m o v e m e n t  of  clasts is d ic ta ted  by the 
pos i t ion  of  the i r  cen te r  re la t ive  to flow lines ( R a m b e r g  
1975) (see A p p e n d i x ) .  

Imbr ica t ion  arises when one  clast  is obs t ruc t ing  the 
no rma l  mot ion  of  ano the r .  In o r d e r  to be t t e r  visualize 
this p h e n o m e n o n ,  cons ider  the  example  of  a s imple  
shear  d e f o r m a t i o n  (Fig. 2), whe re  the  inc rementa l  
m o v e m e n t  of  clasts is a d i rec t  funct ion of  thei r  re la t ive  
height  a long the y-axis .  Wi th  inc reased  d i sp lacemen t ,  
the h igher ,  fas ter  moving  clasts are  even tua l ly  b locked  
by lower ,  s lower  moving  clasts,  if the i r  centers  are  less 
than  one  clast d i a m e t e r  (for spher ica l  clasts) apa r t  in the 
y -d i rec t ion ,  at which po in t  the  clasts b e c o m e  imbr i ca t ed  
and form a t ra in of  clasts (Fig.  2). If  e l l ipt ical  clasts are  
used,  imbr ica t ion  is def ined  when  a po in t  of  contac t  
a ppea r s  be tween  the  two col l id ing ell ipses.  

Tra ins  are subsequen t ly  t r ea t ed  as a single el l ipt ical  

% 
FIXED REFERENCE LINE 

Fig. 2. Independent clasts move at different velocities in the flow 
field, depending only on thc relative y co-ordinate of their centers in 
simple shear. Clasts imbricate when one clast physically blocks the 
motion of another (middle of diagram). The train formed is then 
translated along the dashed line, at the velocity of the train center. As 
more clasts collide, the train velocity changes with respect to a fixed 
line, depending on the position of the center of the train (far right of 

diagram). 

Table 1. 

W k % shortening for 7 = 1 Offset 

1 0 1 

0.91 20 1.01 
0.84 28 1.02 
0.72 38 1.04 
0.55 53 1.10 
0.28 82 1.57 
0 - -  - -  

par t ic le  (with its own o r i en ta t ion  and usual ly  more  
e longa te  el l ipt ical  ra t io)  and m o v e m e n t  is con t ro l l ed  by 
the veloci ty  of  the  midd le  po in t  of  the t rain.  W e  have  the 
choice of  leaving the  t ra ins  in the  o r i en ta t ion  they  
fo rmed  (fixed t rain mode l ) ,  or  mak ing  them ro ta te  
( ro ta t ing  t ra in  mode ls ) .  W h e n  t ra ins  ro ta t e ,  the  middle  
of  the  t ra in acts as the  axis of  ro ta t ion  and the clasts can 
b e c o m e  i n d e p e n d e n t  again when the flow does  not  force 
them toge ther .  The  angle  at which clasts are  r e l eased  is 
the o r i en ta t ion  at which the re la t ive  mo t ion  be tw e e n  two 
ad jacen t  clasts is t angent ia l ,  which is a funct ion of  the 
k inemat ic  his tory:  I t  is 90 ° to the  flow p lane  for  s imple  
shear  and  45 ° and  135 ° for  pure  shear ,  d e p e n d i n g  on the 
sense of  t ra in ro ta t ion .  The  d i f ferent  t r e a t m e n t  of  t ra ins ,  
w he the r  they  r ema in  fixed or  ro ta te  at var ious  veloci t ies ,  
forms the basis  of  the  th ree  modes  of  clast  in te rac t ion  
cons ide red  in this s tudy.  

The  box is sub jec t ed  to a two-d imens iona l  defor -  
ma t ion  ranging  f rom s imple  shear  to pu re  shear .  The  
range  of  s tud ied  cases is shown in Tab le  1 in t e rms  of  the 
k inemat ic  vor t ic i ty  n u m b e r  (Wk, Truesde l l  1953), a 
non- l inea r  ra t io  of  pure  shear  to s imple  shear  for a given 
d e f o r m a t i o n ,  shown d iag ramat i ca l ly  in Fig. 3 (see 

l y - a x i s  

In i t i a l  b o x  i m  . . . . . .  . . S p ie  s h e a r  
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Fig. 3. Three strain histories corresponding to W k = 0, 0.84 and 1, for 
the same amount of offset across the zone. W k values used in this study 

are shown in Table 1. 
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Appendix). Note that W k = t) and Wk = 1 represent pure 
shear and simple shear, respectively, intermediate 
values describing an exact combination of pure and 
simple shear according to Tikoff & Fossen (1993). For 
each experiment, the kinematic vorticity is kept constant 
during progressive deformation, implying steady-state 
flow. 

The deformation of the box and the analysis of clast 
interaction were performed using a computer program. 
Each output is a cumulate average of five runs of 71-106 
clasts, and the results are normalized to 100 clasts. 
Experimental results for the five runs vary by less than 
10%. This two-dimensional modeling makes several 
important assumptions. First, the deformation history is 
homogeneous and simple, i.e. there is no change in the 
characteristics of the deformation for all increments. In 
addition, there is no volume change, or non-plane strain 
component to the deformation. Although these para- 
meters could be easily included in the modeling, they are 
ignored at present to account for the simplest cases. 
Finally, a semi-random, anticlustered distribution of 
clasts is assumed, whereby clasts are placed randomly in 
the box, but an average clast radius is required between 
adjacent clasts. The resulting patterns of clast distri- 
bution are qualitatively similar to that observed in unde- 
formed granite. 

TYPES OF CLAST INTERACTION 

Upon cooling of magma, not only the rotation of clasts 
but also the interaction between clasts is thought to be 
controlled by the conditions of deformation, In the 
magmatic stage, clasts do collide but the trains formed 
are likely to break up with continued flow, as individual 
clasts become independent again (Blumenfeid & Bou- 
chez 1988). Our own observations of granites deformed 
in the solid state suggest that trains of clasts can form and 
survive through significant deformation. Trains of two 
or more clasts are frequently observed and are com- 
monly bounded by shear bands along which the defor- 
mation partitioned, allowing the trains to remain 
unbroken through subsequent deformation. As a result, 
we propose to devise three models of clast interaction, 
based upon the types of clast and train rotation (Jeffery 
vs March), and whether trains rotate or not. The three 
models are the Jeffery-rotating train, where both clasts 
and trains rotate according to Jeffery, the March- 
rotating train, where clasts and train rotate according to 
March, and the March-fixed train, where individual 
clasts undergo March rotation, but trains remain fixed. 
These three models are defined in an attempt to simulate 
magmatic, intermediate and solid-state deformation, 
respectively, and are described below. 

Jeffery-rotating train model (J-R T) 

CLAST ROTATION 

It is suspected that the type of clast rotation varies 
depending upon the conditions during deformation. 
Consider a cooling granitic magma. In the magmatic 
stage, clasts are commonly assumed to rotate according 
to relations derived by Jeffery (1922) and Ghosh & 
Ramberg (1976) for the rotation of rigid clasts in a 
ductile matrix, a result corroborated by numerous physi- 
cal experiments (e.g. Fernandez et al. 1983, Ildefonse et 
al. 1992a, Ildefonse & Mancktelow 1993). This type of 
rotation is referred to as the Jeffery rotation in the 
remainder of this paper. 

However,  a different situation appears to develop in 
the solid state, where clasts are commonly associated 
with shear bands at their edges. Physical experiments 
(Ildefonse & Mancktelow 1993) have simulated strain 
localization (non-continuous shear bands) at the edge of 
the clasts by using a less 'sticky' matrix that did not 
adhere to the clasts. Results of these experiments show 
that the rotation of clasts deviates dramatically from that 
predicted by Jeffery rotation in both simple and pure 
shear. Ildefonse & Mancktelow (1993) suggest that clast 
rotation is closer to the behavior of passive markers 
(March 1932) both in terms of rotation velocities and in 
the fact that clasts, in simple shear, do not rotate past the 
shear plane. Based on these experiments, we consider 
that modeling the rotation of clasts as that of passive 
markers is a good first approximation of solid-state 
behavior; in the rest of the paper, we use the term March 
rotation to describe this end-member of clast rotation. 

This model assumes that, upon collision, clasts form a 
train which rotates rigidly according to Jeffery rotation. 
Trains rotate until individual clasts are not forced 
together by the flow, at which point they become inde- 
pendent. Trains of clasts in this model are typically 
short-lived since the Jeffery rotation imposes that trains 
rotate at all times, irrespective of orientation, such that, 
even after large finite strain, few trains are formed. 

Although Ildefonse et al. (1992b) suggest that the 
rotation of elliptical clasts interferes with that of their 
neighbors, we feel that the Jeffery model provides a 
good first approximation for particles with low elliptical 
ratios (R c < 2.5) and for low clast densities. Jeffery 
behavior is shown diagramatically in Figs. 4 (a) & (b), 
and with respect to rotation rate in Fig. 5. Individual 
clasts are both translated according to flow lines, and 
rotated. The rate of rotation does not depend strongly 
on clast orientation, especially for relatively equidimen- 
sional clasts (R~ < 2.5). Elliptical clasts collide to form 
trains when a point of contact appears between them 
(Fig. 4). Individual clasts do not rotate once they are 
incorporated into a train. Rather, these trains are now 
treated as a larger, individual particle, with the center of 
the train controlling translation and a new ellipticity 
controlling rotation. The trains then rotate, according to 
Jeffery rotation, until the clasts are no longer held 
together, i.e. their respective flow paths do not inter- 
sect, and the clasts become independent again (Figs. 4a 
& b). Because rotation rate of clasts-trains is fairly even 
with respect to orientation (Fig. 5c), all train orien- 
tations are unstable for simple shear-dominated defor- 
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ROTATING TRAIN MODELS 
Jeffery model (rigid particle rotation) 

a.  

March model (passive marker rotation) 

rotation past 
shear plane 

c.  

>no  rotation past 
shear plane 

F I X E D  T R A I N  M O D E L  
Independent clasts rotate according to March model (passive 
marker rotation) 

Increasing finite strain 

Fig. 4. The three modes of clast imbrication used in modeling, Jeffery-rotating train, March-rotating train and March-fixed 
train, shown here for a simple shear deformation. The Jeffery- and March-rotating train models allow individual clasts and 
trains of imbricated clasts to rotate. Trains are allowed to break up when flow field no longer pushes individual clasts 
together. The difference between these models is the nature of clast and train rotation: passive marker (March rotation) vs 
rigid inclusion (Jeffery rotation). Clasts can rotate past the shear plane in the Jeffery model, but asymptotically reach an 
orientation parallel to the shear plane in the March model resulting in a strongcr fabric development. (a) and (c) display thc 
situation for high angle collisions (collision angle is relative to the shear plane). In the March model, high angle trains rotatc 
substantially faster than in the Jeffery model (rotation rate is dependent on the orientation of the thick line connecting 
clasts, see Fig. 5). (b) and (d) show the situation for low angle collisions. In Jeffery model, low angle trains rotate faster than 
in March model. In the March-fixed train model (e), independent clasts rotate according to March, but no rotation of trains 

of imbricated clasts takes place. 

mat ion .  One  add i t iona l  f ea tu re  of  the  Je f fe ry - ro ta t ing  
train mode l  is tha t  clasts are  a l lowed to ro ta te  pas t  the  
shea r  p lane  for  s imple  shear  d o m i n a t e d  h is tor ies  (Fig. 
4b) ,  which tends  to p rec lude  the d e v e l o p m e n t  of  a s t rong 
shape  fabric.  

March-rotating train model ( M-R T) 

In o r d e r  to mode l  an i n t e r m e d i a t e  s i tua t ion  be tween  
magmat i c  and so l id-s ta te ,  pe rhaps  co r r e spond ing  to the 
'pre-ful l  c rys ta l l iza t ion  fabr ics '  o f  H u t t o n  (1988) based  
on work  by Van  de r  Molen  & Pa te r son  (1979), we m a k e  
the t ra ins  and  clasts ro ta te  accord ing  to a March  ro ta t ion  
ra the r  than a Jeffery ro ta t ion .  March  ro ta t ion  descr ibes  
the behav io r  of  pass ive  l ines,  and  should  not ,  in prin-  
ciple ,  be app l i ed  to rigid clasts.  H o w e v e r ,  our  non-  
conven t iona l  a p p r o a c h  is just if ied by the only known,  
re levan t  physical  e x p e r i m e n t  ( I lde fonse  & M a n c k t e l o w  
1993) which suggests  that  the  March  ro ta t ion  is the best  

a pp rox ima t ion  of  rigid clast ro ta t ion  for cases where  
shear  local iza t ion  takes  place  a round  the clasts.  

The  March  ro ta t ion  consis tent ly  shows a la rger  in- 
c r emen ta l  ro ta t ion  of  l ines o r i en t ed  in the  most  uns table  
o r ien ta t ion  (45 ° and  135 ° in pure  shear ,  and 90 ° in s imple  
shear ,  Fig. 5) c o m p a r e d  to the Jeffery  ro ta t ion .  This  is 
t rue  for all types  of  k inemat ic  vort ici t ies .  The  combi-  
na t ion  of  fas ter  ro ta t ion  from uns tab le  to s table  of ten-  
ta t ions  and inabi l i ty  for  single clasts to ro ta te  past  tile 
flow p lane ,  resul ts  in the  d e v e l o p m e n t  of  s t ronger  shape 
fabrics c o m p a r e d  to the  Jeffery mode l ,  i r respect ive  of 
k inemat ic  vort ici ty .  

As  with the  Je f fe ry - ro ta t ing  train mode l ,  clasts do not  
ro ta te  when i n c o r p o r a t e d  into  a t ra in ,  and  are a l lowed to 
b e c o m e  i n d e p e n d e n t  as the t ra ins  ro ta te  and reach a 
crit ical o r i en ta t ion  in which the clasts" flow paths  do not  
in tersec t  (Figs.  4c & d). It should  be no ted  that  single 
clasts may  ro ta te  past  the  shear  p lane in the special  case 
that  they  do  so when a t t ached  to a ro ta t ing  train (Fig. 
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Fig. 5. hwrcmcnta l  rotation of clasts as a function of initial orien- 
l~ltion relative to the flow plane for pure  shear  (W k = 01, a combinat ion 
ol pure and simple shear  (W k = 0.84). and simple shear  (W k = 1), for 
both the March (passive marker)  and Jeffery (rigid inclusion) models  
ol rotation. In all cases, the increment  corresponds  to the same finite 
strain. The Jeffery model assumes a clast elliptical ratio Re = 1.7. (a) In 
pure shear,  clasts of 91! ° and 0 ° do not rotate and both clockwise and 
counter-clockwise rotat ion occurs in both models.  March rotation 
consistently shows a larger incremental  rotation of clasts oriented in an 
unstable orientat ion,  al though 45 ° and 135 ° are posit ions of maximal 
rotation for both models.  (b) For  a W k = 0.84, all clasts rotate forward 
in the Jeffery model if clast ellipticity is &, = 1.7. In the March model,  
clasts do not rotate at initial positions of 0 ° and 147 °, and backrotate 
hctwcen 147 ° and lg0 °. The initial clasl angle for maximum rotation is 
still the same for the two models,  but the minimal rotat ion position 
docs not occur at the same initial clast angle. The maximum amoun t  of 
rotation is still higher in the March model.  (c) For W k = 1 (simple 
shear)  the Jeffcry model results in slightly more  rotation than W k = 
0.S4. and the positions of max imum and min imum rotation are the 
same as in the March model.  However ,  no rotation occurs for clasts 
originally oriented at 0 ° in the Marcia model.  Jeffery rotation is faster 
fo, clasts oriented 0~!-5 ° and 135-180 °, while March rotation is faster 

for original clast positions at 45-135 °. 

4c). When those clasts become independent again, they 
may havc to be involved in a full rotation before reach- 
ing a stable orientation. This process is expected to 
wcaken the shape fabric. 

March-f ixed train mode l  ( M- FT) 

Finally, the model of clast interaction for the low- 
temperature, solid-state end-member of deformation 
also involves a March rotation of individual clasts, 

However,  upon clast collision, the trains do not rotate 
(Fig. 4e), allowing the proportion of clasts involved in 
trains to increase as deformation increases. Since clast 
collision, in this model, is solely a function of the 
intersection of flow paths, the type of strain history 
(simple shear to pure shear) is expected to have a 
significant influence on the proportion of imbricated 
clasts. Once formed, trains are translated along the flow 
path of their center, as in the other models. 

R E S U L T S  

The results are presented in terms of percentage of 
imbricated clasts, average angles of imbrication (angle 
between the line through the center of two imbricated 
clasts and the flow plane) and fabric ellipse ratio (pre- 
ferred orientation of elliptical clasts, including imbri- 
cated clasts). The fabric ellipse as defined here is derived 
from a normalized orientation tensor method described 
by Harvey & Laxton (1980), and used in a variety of 
shape preferred orientation studies (e.g. Ildefonse & 
Fernandez 1988, Benn & Allard 19891. The ratio of the 
eigenvalues gives the fabric ellipse ratio (R 0, which 
varies from 1 for a random distribution, to infinity if all 
elongate clasts are aligned into parallelism. The first 
eigenvector gives the orientation of the long axis of the 
fabric ellipse. These values are calculated by summing 
all long and short axes orientations during each incre- 
ment of deformation. 

The aim of the modeling is to relate these outputs to 
strain, kinematics and other external parameters, such 
as the mode of clast interaction. First, it is important to 
quantify the effect of clast density and ellipticity on the 
results. Graphs were obtained for 5, 7.5, 10, 12.5 and 
20% clast density (Fig. 6a), for the March-fixed train 
model in simple shear. Clast density plays a major role in 
controlling the percentage of imbricated clasts and the 
development of fabric, whereas angle of collision is 
relatively unaffected. Figures 6(a) & (b) show that 
higher clast densities produce more imbrication result- 
ing in an associated lowering of the fabric in the March- 
fixed train model. A 5% density represents the case 
where clasts can rotate with relatively minor interaction 
with their neighbors. Consequently, the fabric ellipse for 
a 5% density is closest to that of non-interacting, passi- 
vely rotating clasts (no imbrication curve, Fig. 6b). For 
densities greater than 5%, there is a substantial lowering 
of the fabric which can only be caused by clast inter- 
action. 

In the case of the Jeffery- or March-rotating train 
models, clast density still has a large effect on the 
percentage of imbricated clasts, but a relatively minor 
effect on fabric development,  for these relatively low 
densities. This result is in contrast to the relatively major 
effect on fabric development in high clast density experi- 
ments of Ildefonse et al. (1992a). In our models, the 
rotation of trains is, in effect, a fabric-resetting mechan- 
ism. This phenomenon will be further discussed in the 
interpretation of the modeling results. In the rest of the 
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Fig. 6. Results of modeling using the March-fixed train model for a 
simple shear deformation.  (a) Effect of density on percentage of 
imbricated clasts. Lower clast densities result in fewer imbricated 
clasts. (b) Effect of density on fabric development.  High clast densities 
cause lower fabric development ,  related to the near random fabric of 
clasts being ' locked in' trains. Curve of no imbrication was created 
using 100 randomly oriented, non interacting elliptical clasts. The 
disparity between that curve and the 5% density curve shows how clast 
interaction affects fabric, even for a low clast density. (c) Effect of 
ellipticity on percentage of imbricated clasts, using 10% clast density. 
No systematic increase in clast imbrication with increasing ellipticity is 
seen, suggesting that relative translation is the controlling factor in 

clast imbrication. 
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Fig. 7. Results of modeling using the fixed train model,  10% clast 
density, R e = 1.7. Pure shear curves are plotted with open squares and 
simple shear curves with filled circles; the kinematic vorticity number  
is given for the intermediate cases. (a) Percentage of imbricated clasts 
versus finite strain ellipse ratio (Rs), demonstrat ing that simple shear is 
effective at imbricating clasts. (b) Average angle of collision (angle 
between the line through the center of two imbricated clasts and the 
flow plane) vs finite strain ellipse ratio. The average angle starts at 90 ° 
for W k = 0 (pure shear) and systematically decreases for increasing W k 
values. (c) Fabric ellipse ratio vs finite strain ellipse ratio. Fabric ellipse 
is highest in pure shear dominated histories, since fewer imbrications 

result in random fabric being 'locked in" non-rotating trains. 

paper, only 10% clast density is presented, as it best 
describes the situation encountered in the studied Sierra 
Nevada granite, and illustrates the essential results of 
the modeling. 

The effect of clast ellipticity was also evaluated. While 
elliptical clasts slightly favor imbrication relative to 
circular clasts, there is no systematic increase of the 
proportion of imbricated clasts with increasing ellip- 
ticity, from R e = 1.5 to Re = 2.5 (Fig. 6c). Since the 
March model of rotation is not dependent on ellipticity, 
the fabric produced is unaffected. For the Jeffery model 
however, fabric would be significantly affected by clast 
ellipticity. For this reason, all the models presented in 
this paper use one ellipticity only, Re = 1.7, which is the 

measured average ellipticity of K-feldspar clasts in the 
studied granite (Lockwood 1975). 

March-fixed train model 

Percentage of imbricated clasts (Fig. 7a). As strain 
increases, the percentage of imbricated clasts necess- 
arily increases, since collision is permanent in this 
model, and eventually reaches an asymptotic value at 
high strain. Clast imbrication increases rapidly up to 
finite strain ellipse of R~ = 20~0 ,  and can therefore be 
considered as a good indicator of strain, provided the 
relative components of simple and pure shear can be 
assumed. 

As Wk decreases (an increasing pure shear com- 
ponent),  the proportion of imbricated clasts gradually 
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decreases. This variation is easy to understand in terms 
of particle path lines. In simple shear, all clasts situated 
'upstream' and within one diameter of a reference clast, 
will eventually collide with it (Fig, 2). In pure shear, only 
those clasts that are on, or very near, the minimum 
principal strain axis, parallel to the shortening direction, 
collide with the reference clast, all other clasts having a 
tendency to move away from it. Therefore, clast colli- 
sion is enhanced by a large component of simple shear. 

Angle of imbrication (Fig. 7b). The angle of imbrica- 
tion rapidly reaches a plateau and cannot be used as a 
reliable strain gauge. The angle of imbrication increases 
significantly with the addition of a pure shear component 
and appears to track the minimum axis of the instan- 
taneous strain ellipse. This is the direction in which the 
clasts are most strongly forced together. The simple 
shear curve is approximately 45 ° from the flow plane, 
while the pure shear curve falls, as expected, around 90 ° . 
As such, the angle of imbrication can be used as an 
indicator of strain history in rocks, provided the flow 
plane (shear zone boundary?) is clearly defined. 

Another result of the non-coaxial nature of simple 
shear in this model is the occurrence of sigmoidal trains. 
During an initial collision, two clasts can collide at any 
angle up to 90 °. The next clast has a greater likelihood to 
collide at a smaller angle (Fig. 8a). By symmetry to the 
reference clast, sigmoidal trains are developed (Figs. 8a 
& b). Although sigmoidal trains of clasts are not com- 
monly reported, asymmetrical curved trains seem to be 
common (Fig. 8c). Our modeling produced curved 
trains by imposing a strain gradient, with the convexity 
pointing up the gradient. Therefore, asymmetrical 
curved trains observed in deformed rocks could be 
explained by the presence of a strain gradient (Fig. 8b). 

Shape fabric of elliptical clasts (Fig. 7c). Before dis- 
cussing the results, it is important to reiterate some of 
the important aspects of the March-fixed train model. 
All independent clasts rotate according to the March 
model of passive marker rotation, i.e. they tend to reach 
an asymptotic orientation parallel to the flow plane. 
Therefore, the fabric ellipse increases with increasing 
strain. However, upon collision, neither the imbricated 
clasts nor the trains formed rotate, 'locking in' the fabric 
of the imbricated clasts while the rotating, independent 
clasts continue to participate in increasing the total 
fabric. The result is that the higher the proportion of 
imbricated clasts, the lower the fabric ellipse ratio, 
which is consistent with the inverse relationship between 
imbrication and fabric for different clast densities (Figs. 
6a & b). 

For low R~ (ratio of the finite strain ellipse), the shape 
fabric varies steeply with strain, and therefore is a 
potentially reliable strain indicator. For higher strain 
values, Rs > 10, if the strain can be estimated from other 
structures, then the discrepancy between a fabric pro- 
duced by pure shear and simple shear increases, making 
the fabric ellipse a good tracer of kinematic history. 

Horizontal imbrication 
Horizontal imbrication not possible after some 
Initially possible deformation a 

ce of f o l i a t i o ~  

b 
Homogeneous strain Strain gradient 

.__.o J 

Fig. 8. Geometry of curved trains. (a) Trains in the models are often 
curved because the first collisions are usually at high angles, yet 
subsequent  collisions can be at low, or cven negative, angles• This 
phenomenon  is a direct result of perturbations in velocity field intro- 
duced by imbrication of clasts. (b) If strain is homogeneous ,  trains 
should be symmetrical,  as equal likelihood of a positive or negative 
collision relative to a reference clast can occur• However,  systematic 
observation of asymmetrical clasts implies the existence of a strain 
gradient, as reproduced in our modeling. (c) Field tracing of a natural 
example of an asymmetric train from the Mono Creek granite• The 
black bar is 2 cm. Concave side of train is directed toward undeformed 

granite, while convex side points to a mylonite zone. 

March- and Jeffery-rotating train models" 

The main difference between the March- and the 
Jeffery-rotating train models is the definition of the 
rotation of clasts (Figs. 4 and 5). The March rotation 
does not depend on elliptical ratio, never allows inde- 
pendent clasts to rotate past the shear plane, and pro- 
duces a high amplitude of rotational velocities (Fig. 5). 
In contrast, the Jeffery rotation is strongly dependent on 
elliptical clast ratio, and approaches passive marker 
(March) behavior for infinitely elongate clasts. Further- 
more, the Jeffery rotation usually allows rotation past 
the shear plane (provided the elliptical ratio is low and 
the Wk is high) and the rate of clast rotation does not 
vary as strongly with clast orientation compared to the 
March model (Fig. 5). 

Percentage of imbricated clasts (Figs. 9a & b). Both 
rotating train models result in a lower proportion of 
imbricated clasts compared to the fixed train model. 
There are as many collisions as in the fixed train model, 
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Fig. 9. Results of modeling using March- and Jeffery-rotating train models, 10% clast density, ~ = 1.7. Pure shear curves 
are plotted with open squares and simple shear curves with filled circles; the kinematic vorticity number is given for the 
intermediate cases. (a) & (b) Percentage of imbricated clasts vs finite strain ellipse ratio. Simple shear is most effective at 
imbricating c[asts in the March model, but least effective in the Jeffery model. (c) & (d) Average angle of collision vs finite 
strain ellipse ratio. Angles show some fluctuation, particularly in Jeffery model, due to rotation and release of clasts in 
trains. (e) & (f) Fabric ellipse ratio vs finite strain ellipse ratio. Fabric ellipse is highest in pure shear-dominated histories for 

both models. Note the oscillatory fabric ellipse only for simple shear deformation in the Jefferv model. 

but trains are allowed to break when adjacent clasts are 
not forced together by the flow. In the March model, the 
percentage of imbricated clasts increases with increasing 
strain and is relatively high. In contrast, the Jeffery 
model does not show a systematic increase in imbricated 
clasts with increasing strain and never produces more 
than 10% imbricated clasts in simple shear. 

The reason for this major difference is due to the way 
both individual and trains of clasts rotate. Let us con- 
sider simple shear deformation. In the March model, 
most individual clasts rotate quickly into a stable posi- 
tion, an orientation that shows a minimal incremental 
rotation, subparallel to the flow plane (Fig. 5). As a 
result, the statistical angle of collision of clasts is de- 
creased, because these elongate, sub-parallel clasts 
either collide at low angle (close to the flow plane) or not 
at all. In the event of a high angle collision, the fast 
rotation of high angle trains in the March model pre- 
cludes their preservation (the clasts rapidly become 

independent). The low angle trains, formed in a stable 
orientation, rotate slowly and are better preserved 
through subsequent deformation. In contrast, the clasts 
in the Jeffery model are not quickly aligned in the shear 
plane, and high angle collisions are more probable than 
in the March model. These trains quickly rotate until 
imbricated clasts are released, placing a limit to the 
number of imbricated clasts at any given time. If an 
unlikely low angle train is formed, it will have a greater 
potential for preservation than a high angle train, but 
will rotate more quickly than the same position in the 
March model. The low percentage of preserved colli- 
sions in the Jeffery model is corroborated by experimen- 
tal work involving rigid particles in a ductile matrix 
(Fernandez et al. 1983, Ildefonse & Fernandez 1988, 
[ldefonse et al. 1992a), where a low proportion of 
imbricated particles accumulate in the low clast density 
models as particles are continually released. 

Another  difference between the two rotating train 
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models is their response to varying W k. The Jeffery 
model displays a higher proportion of imbricated clasts 
for decreasing W k, while the reverse is true for the 
March model (Figs. 9a & b). Note that the trend dis- 
played by the March-rotating train model is the same as 
that of the fixed train model,  and is associated with the 
same mechanisms (see discussion above). The differ- 
ence lies in the lower percentage of imbricated clasts in 
the March model caused by the non-permanent  nature 
of collisions. The inability of the Jeffery model to 
accumulate imbricated clasts in simple shear is due to the 
relatively fast rotation of trains. The effect of adding a 
pure shear component  to the Jeffery model is to de- 
crease the rate of clast rotation (Fig. 5). Therefore,  a 
slower train rotation will allow a greater  preservation of 
imbricated clasts (Fig. 9b). 

Angle of imbrication (Figs. 9c & d). The average angle 
of imbrication is only slightly affected by the rotation of 
trains. Both rotating train models, especially the Jeffery 
model, cause a fluctuation in the angle of collision, 
simply due to the rotating nature of trains. Pure shear 
deformation still tends to cause imbrication around 90 ° 
and increasing Wk values result in a progressive decrease 
in the angle of collision. Once again, since these angles 
of collision are relatively constant over large strain 
values, this parameter  is not a very good strain gauge for 
any model of clast interaction, but might be useful as an 
indicator of strain history. 

As we saw above,  March model rotation quickly 
rotates independent clasts into parallelism to the flow 
plane and favors the development  of low angle trains. A 
direct implication of this mechanism is that, for all W k 
values deviating from pure shear, the angle of collision is 
slightly lower in the March-rotating train model than 
either the March-fixed train or Jeffery-rotating train 
models, 

Shape Jabric of elliptical clasts (Figs. 9e & f). The two 
rotating train models differ in fabric development,  with 
the Jeffery model always producing a substantially lower 
fabric ellipse ratio. This is due to the fact that trains of 
clasts rotate, resetting part of the fabric ellipse, and this 
rotation is more effective for the Jeffery model. The 
March model results in relatively strong fabric develop- 
ment,  despite rotation, because: (1) individual clasts, 
even if they are released from high angle trains, quickly 
become aligned parallel to the flow plane (stable orien- 
tation); and (2) the fabric of clasts that are ' locked in" 
the trains is a strong one, since collision of those clasts 
chmgated close to the flow plane is favored. 

Another  difference is the lack of a systematic increase 
in fabric ellipse with increasing strain in the Jeffery 
model. A dominantly pure shear deformation does have 
a systematic increase in fabric, but the fabric ellipse is 
oscillatory in simple shear. The fabric is similar, but 
slightly lower in magnitude,  than that obtained in simple 
shear experiments by Ildefonse & Fernandez (1988). In 
their experiments,  the fabric reached values between 3 
and 5 for rectangular markers  whose shape was 2.5:1, 
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Fig .  10. C o m p a r i s o n  o f  t h r e e  m o d e l s  o f  c l a s t  i n t e r a c t i o n  f o r  s i m p l e  

shear and pure shear. Pure shear represented by open squares, simple 
shear by filled circles. (a) Percentage of imbricated clasts vs finite strain 
ellipse ratio. Note similarity between March-fixed train and March- 
rotating train models. Jeffery-rotating train curve is much lower 
because of the difference in clast and train rotation rates. (b) Average 
angle of collision vs finite strain ellipse ratio. March-rotating train 
model curve is slightly lower than other models for simple shear due to 
better preservation of low angle trains. (c) Fabric ellipse ratio vs finite 
strain ellipse ratio. Pure shear produces strongest fabric for all modes 
of clast interaction. The Jeffery model produces a much weaker fabric 

than other models. 

compared to our elliptical particles of R e = 1.7, and they 
used a lower clast density, implying less clast interaction. 
However ,  their model shows the same periodicity which 
is dominantly a simple shear phenomenon (Fig. 9f). As 
they point out, and our results corroborate ,  the oscilla- 
tory nature of the simple shear fabric curves demon- 
strates the difficulty in extracting any information from 
the fabric ellipse for this type of deformation,  unless the 
exact W k is known a priori. However ,  an oscillatory 
fabric ellipse derived from a zone of shear gradient could 
be interpreted as due to predominantly simple shear 
deformation,  as an even slight component  of pure shear 
greatly increases the curve wavelength (Fig. 9f). 

Summary (Fig. 10) 

Simple shear deformation in the March-fixed train 
and March-rotating train models accumulates the most 
imbricated clasts (Fig. 10a). Although the March- 
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rotating train model produces slightly less imbricated 
clasts, the results are not dramatically different from the 
fixed train model. Therefore,  whether trains rotate or 
not does not drastically influence the percentage of 
imbricated clasts, when using the March model. Again, 
among all collisions that take place in the March model, 
only low angle ones form trains that are preserved 
during continued deformation. These trains being resist- 
ant to rotation, they largely behave as if they were fixed, 
hence the similarity of the results between the two 
models. 

In contrast, Jeffery rotation precludes a large pro- 
portion of clasts to be imbricated in simple shear (Fig. 
10a), due to the relatively even rotation rate irrespective 
of orientation. Therefore,  on the basis of the analysis of 
imbricated clasts in deformed rocks, one should be able 
to discern between a dominant March, either fixed or 
rotating, and a Jeffery rotation behavior. One could also 
distinguish, in simple shear, between the March fixed 
train and the March-rotating train behavior, by analyz- 
ing the fabric (Fig. 10c). The fabric ellipse is substan- 
tially lower when trains are allowed to rotate, due to the 
partial resetting of fabric as imbricated clasts become 
independent. 

This resetting is also consistent with the slightly lower 
angle of collision in the March-rotating train model, for 
simple shear deformation (Fig. 10b). Because high angle 
collisions are very unstable, the average angle of pre- 
served imbrication is decreased. In contrast, the March- 
fixed train model preserves higher angle collisions, so 
that the average angle of collision is slightly higher. 
However,  this - 1 5  ° difference in average angle of colli- 
sion might be difficult to determine in the field. The 
average angle of collision may provide constraints on the 
relative components of pure and simple shear, provided 
the flow plane (shear zone boundary?) is well defined. 

The results from the Jeffery model differ significantly 
from the other two models. Not only is the percentage of 
imbricated clasts significantly lower, but the effect of 
kinematic vorticity is reversed. Again, this is due to the 
gradual reduction of rotation rate with an increasing 
pure shear component,  resulting in a net increase in the 
proportion of imbricated clasts. By recording in the field 
the combination of proportion of imbricated clasts and 
clast preferred orientation, one might, in some cases, 
obtain a unique insight into the relative components of 
pure and simple shear. 
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Fig. 11. Outline of Mono Creek granite. Subvertical foliation is found 
throughout. The Rosy Finch shear zone (boundary marked by dashed 
lines) contains subhorizontal lineation and subvertical shear planes, 

shown on lower-hemisphere stereoncts. 

studied on two traverses across the shear zone. The 
Purple Lake traverse was taken where the shear zone is 
relatively narrow (1.5 kin) and parallels a metasedimen- 
tary contact; highest strains in this traverse are localized 
near the contact. The Tully Lake traverse was made 
where the shear zone starts to move away from the 
pluton contact; there, the shear zone is relatively wide 
(3.5 km), and the highest strain occurs in the middle of 
the shear zone. The subverticai foliation, subhorizontal 
and well defined lineation, and the presence of kinema- 
tic indicators such as asymmetric tails around porphyr- 
oclasts and S-C angular relations (Berth6 et al. 1979), 
suggest that the Rosy Finch shear zone is a dextral strike- 
slip zone characterized by dominant simple shearing. 

APPLICATION TO SIERRA NEVADA GRANITE 

Results of the modeling have been applied to a por- 
phyritic granite in the east-central Sierra Nevada batho- 
lith, California. The Mono Creek granite in the Mt. 
Abbot and Mt. Morrison quadrangles (Rinehart & Ross 
1964, Lockwood & Lydon 1975) is the youngest granite 
of the Mono Pass intrusive series (92-83 Ma), and was 
deformed in the syn- to post-magmatic Rosy Finch shear 
zone (Fig. 11) (Tikoff & Teyssier, 1992). The distri- 
bution and interaction of K-feldspar megacrysts were 

Technique 

Outcrop tracings of surfaces perpendicular to folia- 
tion and parallel to lineation where drawn on 30 × 54 
cm, thick plastic sheets (example shown in Fig. 12). In 
the two traverses studied, the number of clasts over the 
tracing area varies between 52 where clasts are unusually 
large and 185 where they are small, with an average near 
100. Lockwood (1975), in a detailed mapping of the 
distribution and size of the feldspar megacrysts in the 
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Fig. 12. Sample field tracing from the Rosy Finch shear zone, Mono Creek granite, Sierra Nevada, California. Clasts that 
were counted as imbricated are black. Shape and orientation of average quartz elongation is shown by ellipse in center of 

tracing. 

M o n o  Creek  granite,  showed that feldspar size averages 
1.7 × 1.0 cm, with a fairly constant  aspect ratio, and 
their density increases toward the margins of  the plu- 
tons,  a l though the total K-feldspar content  remains 
relatively constant .  We found clast density (about  10%), 
size and distribution to be very close to that repor ted  by 
Lockwood  (1975). Further ,  there is no difference in 
megacryst  content  within and outside the Rosy  Finch 
shear zone (based on megacryst  distribution mapping of  
Lockwood  1975 combined  with our  field work) ,  sugges- 
ting that no large-scale 'filter pressing' ,  or  change in the 
matrix/clast ratio, is associated with the shear zone.  The 
K-feldspar megacrysts  are not  recrystallized, and rarely 
broken,  except in the mylonite  zone at the eastern end of  
the Purple Lake traverse. 

The imbricated K-feldspar porphyroclas ts  were 
counted  in the field and marked  appropria te ly  on the 
tracings which were then digitized in the labora tory  to 
determine clast density,  or ientat ion and preferred orien- 
tation (fabric ellipse). At  each tracing locality, the 
dimensions of  quartz  aggregates were used as an indi- 
cator  of  finite strain, in order  to plot the results on the 
templates  provided by the models.  The quartz aggre- 
gates are circular in the unde fo rmed  granite to highly 
elliptical by the metased imenta ry  contact  in the Purple 
Lake traverse. This observat ion,  combined  with the 
correlat ion of  lower S-C angles and bet ter  deformat ion 
band deve lopment ,  allowed us to use the quartz  aggre- 
gates as a relative measure  of  finite strain (see below). 

It follows f rom the model ing that,  unless the orien- 
tation of  the shear zone boundary  or  flow plane is 
known,  the angle of  imbrication is generally not an 
accurate measure  of  strain or  kinematics. Therefore ,  
results are plot ted onto  the templates  for percentage  of  
imbricated clasts and fabric ellipse. The templates  corre- 
spond to 10% clast density and R e - 1.7 clast aspect 
ratio, the measured  averages for the M o n o  Creek gra- 
nite. 
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Fig. 13. (a) Percentage of imbricated clasts vs finite strain ellipse ratio 
for simple shear. Purple Lake stations are shown with open triangles 
and Tully Lake stations with filled diamonds. Percentage of imbricated 
clasts is too high for all models, if strain inferred from quartz grain 
elongation is correct. Regardless of strain, percentage of imbricated 
clasts is always higher than predicted by the Jeffery model. The March- 
fixed train model best fits data and suggests feldspar imbrication took 
place primarily under solid-state conditions. (b) Fabric ellipse ratio vs 
finite strain ellipse ratio. Fabric data best fits the March-fixed train 
model. Slight upward deviation could be a result of an inherited 

magmatic fabric. 

Results 

Figure 13, showing all plots f rom the Purple Lake and 
Tully Lake  traverses,  shows that most  tracings are 
character ized by a large percentage  of  imbricated clasts 
(15-25%).  Compar i son  of  this percentage  to the model-  
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ing, using only a simple shear deformation for the three 
modes of clast interaction, illustrates several points. 

- - T h e  Jeffery-rotating train model produces no more 
than 10% imbricated clasts, whatever the amount of 
strain, so it is unlikely that this model is applicable. 

---The March-fixed train model is the closest to pro- 
ducing the observed proportion of imbricated clasts, 
although the March-rotating train model can also pro- 
duce relatively large percentages; in both cases how- 
ever, the accumulated 15-30% imbricated clasts would 
require a much higher strain than recorded by quartz 
elongation in the granite. 

- -Since the addition of a pure shear component de- 
creases the proportion of imbricated clasts in the March- 
fixed and March-rotating train models, simple shear is 
the most likely deformation history to explain clast 
interaction in the Mono Creek granite. 

---The shape fabric analysis of the Mono Creek gra- 
nite suggests, in the Purple Lake traverse where the 
granite is least deformed, an intermediate behavior 
between Jeffery and March characterized feldspar ro- 
tation. In the Tully Lake traverse, where fabric is better 
developed, a March model of feldspar rotation is sugges- 
ted. Considering that the models are based on rigid 
particles tracing the rotation of a passive marker, it is 
quite satisfying to see that the trend of the fabric ellipse 
ratio is so near the calculated curves. The fact that the 
observed fabric plots above the March model curves for 
simple shear could be related to a slight component of 
pure shear in the deformation, although this is contrary 
to the trend shown by the proportion of imbricated 
ctasts. 

Discussion 

The discrepancy between the observed large number 
of imbricated clasts compared to the number predicted 
by modeling can be explained in different ways. 

(1) The initial texture of the granite, prior to signifi- 
cant deformation, is one of clustered clasts which would 
significantly increase the proportion of imbricated 
clasts. However,  the least deformed parts of the Mono 
Creek granite rarely show that clustering, and where it 
exists in the form of small pegmatitic veinlets or pockets, 
these localities were avoided when tracings were drawn 
in the field. It is not believed that the discrepancy is 
entirely due to a clustering effect. 

(2) There exists a three-dimensional effect to the 
deformation that we are not taking into account in the 
modeling. We showed that filter pressing probably 
played a minor role in the granite deformation, but a 
volume-conservative deformation such as transpression 
needs to be considered. In transpression, strain carries a 
pure shear component responsible for vertical extension 
perpendicular to the plane of the studied tracings. This 
vertical extension is compensated by a reduction of 
surface area of a horizontal material plane in which clast 
density would remain the same. Only imbrication in and 
out of the plane would produce the observed discrep- 
ancy in clast imbrication. We know from our modeling 

that the effect of pure shear on imbrication is minor 
relative to simple shear. Therefore,  it is unlikely that a 
small pure shear component to the transpressive defor- 
mation can explain the observed discrepancy in the 
proportion of imbricated clasts. However,  the exact 
effect of transpression on clast interaction would 
necessitate modeling in three dimensions. 

(3) The discrepancy can be explained by the fact that 
quartz grains in a granite are a poor recorder of the strain 
that has led to feldspar imbrication. Grain boundary 
slip, for instance, could accommodate some of the 
strain. If the feldspar grains experienced much more 
deformation than suggested by the quartz, then all 
points in Fig. 13(a) should be translated to the right, and 
might intersect the curves corresponding to the March- 
fixed or March-rotating train models (it still remains that 
the Jeffery model does not predict that large a pro- 
portion of imbricated clasts). 

(4) Because the Rosy Finch shear zone is suspected to 
be a syn-emplacement shear zone (Tikoff & Teyssier 
1992), it is possible that some component of both mag- 
matic and solid-state deformation occurred. During the 
evolution of a granite pluton (cooling and flow), the 
early-formed feldspar megacrysts in the melt would 
likely interact according to the Jeffery-rotating train 
model. Our modeling suggests that, if strain is greater 
than R~ = 5, about 10% imbricated clasts would be 
present at all times during magmatic flow. In a conti- 
nuum of deformation and cooling, the mode of clast 
interaction would gradually change to a March-rotating 
train model, followed by a March-fixed train model. We 
propose that quartz grains started to record strain late in 
the crystallization of the magma, after 10% imbricated 
clasts had already formed. Using Fig. 13(a), this is 
equivalent to lowering all data points 10% along the 3'- 
axis, after which the data fall very nearly on the pre- 
dicted March model curves. In this hypothesis, the 
observed percentage of imbricated clasts would be the 
cumulative number produced during magmatic flow, 
added to the proportion of clasts that subsequently 
imbricated in the solid state. 

This line of reasoning can also be applied to the 
observation that the feldspar fabric in the granite is 
commonly stronger than that predicted from the calcu- 
lation (Fig. 13b). If a fabric was acquired during mag- 
matic flow, it could serve as an initial fabric for sub- 
sequent solid-state deformation, leading to a stronger 
preferred orientation than predicted by solid-state de- 
formation alone. 

DISCUSSION 

Although many studies have been carried out on 
rotation of clasts in naturally deformed rocks, most 
studies have not taken clast interaction into account. 
However,  as shown here, for clast percentages as low as 
5%, the interaction of clasts has a fairly major impact on 
fabric development. This result corroborates the 
findings of lldefonse et al. (1992a), that the fabric ellipse 
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Fig. 14. Oppositely imbricated clasts, which could not be explained 
by the mechanism of tiling (a) in a simple shear deformation (Blumen- 
tk:ld & Bouchcz 1988) can result from clast translation in simple shear, 
provided the angle of imbrication is considered with respect to the 

shear plane, and not foliation (b). 

deviates substantially from that of non-interacting 
clasts. Clast interaction should not be perceived as a 
negative phenomenon getting in the way of deformation 
analysis. Our modeling demonstrates that clast inter- 
action can be exploited to give important information 
about strain, kinematics and conditions of deformation, 
especially if a ,judicious combination of field data are 
collected. 

As pointed out earlier (Fig, 8), the geometry of clast 
imbrication might provide important information about 
the strain gradient. In general, asymmetric trains form 
such that the convex side points up the strain gradient. 
Another  geometrical result of our modeling might help 
explain the paradoxical appearance of oppositely 'tiled' 
clasts (Blumenfeld & Bouchez 1988). As shown in Fig. 
14(a), oppositely tiled clasts cannot occur in a simple 
shear flow. Although a pure shear component could 
cause such an effect, as suggested by Blumenfeld and 
Bouchez, this would, in general, require unrealistically 
low kinematic vorticity numbers for shear zones. This 
problem is somewhat alleviated by considering the 
translation of clasts. Clasts not only rotate in space, but 
are simultaneously translated in the flow field. The clast 
imbrication angle is often measured in the field with 
respect to foliation (Fig. 14b) which does not generally 
coincide with the shear plane. Therefore clasts might 
'appear to be oppositely imbricated with respect to the 
foliation plane, but when viewed relative to the shear 
plane, these apparently opposite imbrications indicate 
consistent sense of shear. 

Our modeling, and concurrent field work, also carries 
implications for thc recognition of magmatic vs tectonic 
t'eatures in granitoids. Paterson et al. (1989), following 
1)cn Tex (1969) and Blumenfeld (1983), propose that 
imbrication of crvstals is the result of non-coaxial, mag- 
matic flow. However, if our analogy between the state of 
the material and the mode of clast interaction is at least 
qualitativel) correct, several fundamental points can be 
made. The March-fixed and March-rotating train 
models are more effective at imbricating clasts, even at 
relatively low strains, for any Wk. If these two models 
represent intermediate and solid-state deformation, we 
suggest thai imbrication of crystals is mostly a non- 

magmatic-state phenomenon. In particular, the pres- 
ence of imbricated feldspar clasts and S- ( '  structures in 
the same rock need not be the product of a transition 
from magmatic to solid-state flow, as suggested by 
Paterson et al. (1989), without other supporting evi- 
dence. In addition, our Jeffery model, which qualitat- 
ively simulates magmatic flow, is far more effective at 
imbricating clasts and developing fabric as the com- 
ponent of pure shear increases. In the magmatic state, 
the strain compatibility problems commonly related to 
pure shear deformation may not be so severe, and near- 
pure shear histories might be quite common. It is clear 
from our models, as well as the experiments of Ildefonse 
et al. (1992a), that clast imbrication is not solely a non- 
coaxial phenomenon. 

If used properly, the imbrication of clasts could con- 
tain much information about the pre-, syn- and post- 
kinematic deformation of granites. Strain methods 
based on clast interaction, combined with the analysis of 
anisotropy of magnetic susceptibility, or other measures 
of deformation, should provide us with new insights into 
granite deformation. 

CONCLUSIONS 

Two-dimensional computer modeling shows that the 
proportion of imbricated porphyroclasts and the shape 
fabrics of elongate clasts are dependent on the magni- 
tude of finite strain as well as the kinematics of defor- 
mation. Therefore,  using the modeling results as tem- 
plates, it is possible, in cases of plane strain deformation, 
to infer strain and/or kinematics, if one of these two 
variables can be assumed or if a trend of data can be 
plotted. 

However,  the results also show that the mode of clast 
interaction plays a critical role in the accumulation of 
imbricated clasts and the development of a shape fabric. 
Using a set of simple assumptions we have defined three 
types of clast interaction in an attempt to simulate the 
conditions of clast interaction under varying conditions, 
ranging from the magmatic to the solid state. The 
modeling suggests, for instance, that solid+state con- 
ditions favor the development of clast imbrication. 
Within the limits of our assumptions+ it appears that a 
combination of studies of fabric and clast imbrication 
should provide valuable information on the conditions 
under which fabric developed. Such a combination of 
analyses in a granite of the Sierra Nevada suggests that 
fabric and clast imbrication began in the magmatic state, 
and culminated in the solid state under simple shear- 
dominated kinematic conditions. 
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APPENDIX 

For homogeneous deformation, the matrix D describes a linear 
transformation relating the undeformed vector or point (x) in a 
Cartesian co-ordinate system to its position after deformation (x') 
(e.g. Flinn 1979): 

x' = Dx. (A1) 

For plane strain this matrix transformation is equivalent to the trans- 
formation equations 

Xl'  = D l l X  1 + Ol2X 2 

X2' = D21x I + O22x 2, 

where D o are the components  of D, and where any translation involved 
is neglected. 

A deformation matrix which combines simultaneous pure and 
simple shearing was derived by Ramberg (1975, equation 38) in a 
continuum mechanics framework: 

exp(i,,t) - exp(-kx,t)]  
( x l ) = e x p ( i x ~ t ) )  2~}~, ] (xX;), (A2) 

[ 0 exp(-i:~,t) J 

where k~ is the rate of pure shearing, i.e. the extension rate parallel to 
the shear direction, and )) is the rate of simple shearing. 

Although this matrix may be used in its present form, a somewhat 
simpler, t ime-independent version of it may be derived (Merle 1986, 
Tikoff & Fossen 1993): 

D =  L,, kF_Ij ] 21nk  / '  (A3) 
k ~ ] 

where the off-diagonal (rotation) term is a function of the pure and 
simple shearing components,  and may be termed F (effective shear 
strain). 

To find the geometry of the strain ellipse from this deformation 
matrix, form the matrix DD T. The two eigenvalues of this matrix are 
the quadratic principal strain magnitudes, e.g. )~l = (1 + e I )2, and their 
corresponding eigenvectors give the directions of the principal axes in 
the deformed state. The eigenvalues (length of strain ellipse axes) are 
given by the formula 

2 : F2 + kl + k~ +_ V'-4k{k~ + (I ̀ 2 ~ 2 ~  
(A4) 

2 

and the corresponding cigenvectors can be expressed as 

_k2F ) 
e = F 2 q- k 1 - / ] . .  ( A 5 )  

1 

The angle 0'  between the largest principal strain axis and the shear (x I ) 
direction is: 

0' = arccos (e I L), (A6) 

where e u is the first component  of the normalized eigenvector of DD r 
corresponding to Z 1 (the normalized form of a vector v is V/(vTv) l/z). 

The Wk, or kinematic vorticity of this steady state deformation is 
given by: 

Wg = eos[arctan(2 In (k)/7)] (A7) 

(Tikoff & Fossen 1993). This result includes the conditions of W k = 1, 
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implying simple shear, and W k = 0 implying pure shear. Table 1 is 
derived from this relation. 

To investigate the strain path in terms of pure and simple shear, one 
can choose a fixed strain increment and calculate the deformation 
matrix after each increment (Elliott 1972). For n increments and a 
constant pure shear/simple shear ratio throughout deformation, the 
incremental simple shear (Yi,~) simply becomes 0'tota0/n, and /q,~ 
becomes (ktot~l) O/'0. The incremental deformation matrix can be 
written as: 

(ktotal)i/n l/(ktot.0 TM] 
[kincr Fincr ]= (ktotal),/ . . . .  '~'tota, 2l'~'~t ~ ]. 

Di,cr = [ 0 1/kin~r j [ 0 l/(ktot~l) l/" J 

(A8) 

Note that Finer # (Ftota0/n and F~ncr # (Ftota0 Ore) due to its dependence 
on both k and ~. This matrix gives the exact incremental strain for any 
steady-state (constant kinematic vorticity number) combination of 
pure and simple shear. 

It is possible to study the passive rotation of planes (the March 
model) during any increment of deformation using this deformation 
matrix, One can study the change in orientation of any plane from its 
initial orientation, specified by its pole, the unit vector p (made up of 
the direction cosines), to the new direction p' by the transformation: 

p' = pD- l  (A9) 

(Flinn 1979). The angle of rotation (cp) of this plane can be found by 
taking the dot product, from which we derive the formula: 

pp' 
cos 9 = [p][p,]. (AIO) 

The rotation of various sized ellipses can also be calculated using the 
above deformation matrix. Ghosh & Ramberg (1976) derived the 
equations for an elliptical clast of ratio R (=a/b or ratio of long to short 
axis of clast) in a two-dimensional flow, such that the rate of rotation is 
given by 

~(R 2 cos2(~ + sin2q0 k(R 2 - 1 ) sin 2q~ 
+ R2 ( A l l )  c~= R 2 + I  +1  

where ~) is the strain rate for simple shear, k is the strain rate for pure 
shear and q~ is the original orientation of the long axis of the elliptical 
clast with respect to the x-axis. The former term in equation ( A l l )  
reflects the rotation caused by the simple shear component of defor- 
mation and the latter term reflects the pure shear component of 
deformation, which may be added directly since they are instan- 
taneous quantities. As mentioned earlier, these instantaneous strains 
can be converted to finite strains, by substituting k = exp(kxt ), or/'x = 
In(k)/t, and ~ = 7/t. Therefore, a finite rotation is easily obtained for a 
finite strain, simply by substituting these values back into equations 
(A3) and (A4). 


